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On account of the high accuracy with which spectroscopic data 
are obtained, thermodynamic quantities calculated from these 
data are far more reliable than those obtained by direct thermal 
measurements. It may be predicted that in the future thermo- 
dynamic quantities will be calculated from spectroscopic data, 
whenever they are available. The band spectra of most diatomic 
molecules have been analyzed completely. Little progress has 
been made with polyatomic molecules because of their complexity, 
although there is reason to believe that the Raman spectrum 
may furnish sufficient data for approximate thermodynamic 
calculations, a t  least. The discussion of this article2 will be 
limited to monatomic and diatomic molecules. The calculation 

1 Presented a t  the Symposium on the Application of the Quantum Theory to  
Physical Chemistry a t  the eighty-first meeting of the American Chemical Society 
at Indianapolis, March 31, 1931. 

T - absolute temperature. 
k 
N total number of molecules. 
No L. 6.06 X 10z3, the number in one molecule. 
R = Nok the molal gas constant. 
m = the mass of one molecule. 
h = Planck's constant = 6.55 X 10-2' ergs/second. 
N ,  = the number of molecules in the n th  energy level. 
en = the energy of one molecule in the nth energy level. 
e - the base of the system of natural logarithms. 
I = the moment of inertia of a molecule. 
w the frequency of vibration of the molecule. 
pn = the multiplicity of the nth level. 
i = the quantum number n in a summation. 
Z = sign of summation t o  be taken over all energy levels from zero to  infin- 

2 The symbols used in this article are as follows: 

= molecular gas constant = 1.37 X 10-16 ergs/degree. 

ity. The limits of the summation need not always be printed. 
319 
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of heats of dissociation will not be discussed in this paper, since 
it belongs to the theory of spectroscopy rather than to statistical 
mechanics, 

The ultimate goal in the analysis of the band spectrum of a 
molecule is the determination of the possible energy states of 
the molecule. From the conventional method of representing 
these energy states graphically (figure 1) they have come to be 
known as energy “levels.” In the case of the diatomic molecule 
these levels are somewhat arbitrarily classified as rotational, vi- 
brational or electronic levels. This classification has the ad- 

FIQ. 1. ENERQY LEVELS O F ~ A  MOLECULE 

vantage that the formulas for the spacing of the different kinds 
of levels are given for the simpler cases by the quantum mechanics, 
and in the more complex cases may be represented by empirical 
formulas. These formulas all contain a quantum number which, 
usually, begins with zero and takes on successive integral values. 

Both diatomic and monatomic molecules in the gaseous stage 
possess kinetic energy of translation. This kinetic energy of 
translation is usually supposed to vary continuously, but in this 
paper we shall assume that translational energy also is quantized, 
and we shall proceed later to derive an expression for the trans- 
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lational energy levels. Consequently the possible energies of 
any gaseous molecule are given by a set of discrete energy levels, 
which are often very numerous and very close together, but which 
never become a continuum. When a molecule has a certain 
energy we shall say that i t  lies on a certain energy level. 

THE DISTRIBUTION LAW 

The Maxwell-Boltzmann distribution law states that N,,  the 
number of molecules in the nth energy state or level, is given by 
the expression, 

N ,  = N K ~ -  (1) 

where N is the total number of molecuIes, K is a constant, e is the 
base of the system of natural logarithms, e, is the energy of the 
nth level, 12 is the molecular gas constant and T is the absolute 
temperature. Equation 1 has been tested by experiment and 
shown to hold rigorously under ordinary conditions, but recent 
theoretical developments have shown that this is more or less 
accidental. Equation 1 is derived by the use of the statistics of 
Boltzmann. We now know that the correct statistics for neu- 
tral molecules are those of Bose and Einstein. Both methods of 
calculation lead to the same limiting form of the distribution 
law, equation 1, for a gas at high temperatures and low pressures, 
but the Bose-Einstein method gives the correct result under all 
conditions and is free from certain inconsistencies that mar the 
Boltzmann statistics. 

En 

Equation 1 is often written: 
En 

N ,  = NKp,e- LF (2) 

where pn is the weight factor of the nth energy level. If pn has a 
value different from unity it means that the level is degenerate, 
that is, that under a perturbing field, the molecules will be sepa- 
rated into classes which differ from each other slightly in energy. 
In  other words, p, is the multiplicity of the nth level. It will 
often be simpler for our purposes to assign to a level with the 
multiplicity pn the designations n, n+l ,  etc., with the under- 
standing that the energies e,, etc., become equal to each other 
in the absence of a perturbing field. 
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THE BOSE-EIKSTEIK STATISTICS 

Let pi be the multiplicity of a level with energy ei. Then the 
number of different ways in which Ni molecules may be dis- 
tributed among the pi levels is 

(Ni + pi) ! 
Nil pi! 

Ni! appears in the denominator because in the Bose-Einstein 
statistics the interchange of like molecules is without significance, 
and pi appears in the denominator, because the interchange of 
levels can have no physical meaning. The total number of 
possible arrangements of N molecules among a series of energy 
levels is given by the continued product of 

(Ni + Pi) ! '='[ i - 0  N i ! p i ! ]  

terms 

(3) 

The most probable values for No, N1,  etc., are those which will 
make P a maximum. This condition may be stated for our 
purposes most conveniently, 

b l n P = O  (4) 

Expanding equation 3 and remembering that p i  is a constant, 
we have3 

8 When N is a large number 
N! = N N ~ - N  2/2?r.?r 

For the calculations in this paper a sufficient approximation is  obtained by 
writing 

N! = N ' E - ~  
Taking logarithms, equation 3 becomes 

( N ~  +pi)Ni+pie-(Ni+pi1 
In = In ~,Ni~~p$~e-Ni,-pi 

This becomes 
b In P Z ( N i  + pi) In (Ni + pi) - ZNi In Ni - Zpi In pi 
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Since the total number of molecules and the total energy is con- 
stant, we have two further conditions 

XNi = N 
ZqNi = E 

which may be written 
?XNi = 0 

ZeiSNi = 0 

If, following the custom of the mathematician, we multiply 
equations 8 and 9 by undetermined multipliers, a and 8, and add 
them to equation 5 we have 

Since for the maximum value of P the 6"s are arbitrary we may 
choose values for the ~ N ' s ,  a, and B so that all terms vanish ex- 
cept the one which contains N,. 

This may be rewritten 

or 

It turns out that for a gas a t  ordinary temperature and pressure 
0a is very large compared to unity so that we may write 

N ,  =i pne-ae--8en (14) 

Remembering that  Ni is varied and p i  is constant we get 
6 In P = 0 = 26Ni + Z: In (Ni + p i )bNi  - Z6Ni - Z In Ni6Ni 

This leads t o  equation 5 above. 
The num- 

ber of ways in which this distribution may be obtained, counting as one those 
which differ only by permutations of like molecules, will be referred to  as the 
number of arrangements. 

A given set of values for No, N1,  N,,  etc., is called a distribution. 
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1 
kT fl  is to be identified with - so that we have the general form 

of equation 1 

(15) 
--a - e 5  

N ,  = p,e e kT 

THE ENERGY LEVELS O F  A MONATOMIC GAS 

The experiments of Stern on the reflection of molecules from 
crystal surfaces show that the motion of a free particle may be 

represented by a DeBroglie wave of wave length = -. Just 

as there is a limitation on the number of stationary acoustical 
waves that can exist in a box so is there a precisely analogous 
limitation on the number of possible DeBroglie waves in an 
enclosure. The effect of this is to limit the momentum and hence 
the translational energy of the molecule to certain discrete 
values. The result is most easily obtained from the Schroedinger 
equation 

(16) w++- ( E - W ) + = O  

?V, the potential energy, is zero throughout the box containing 
the gas and I) must vanish a t  the walls. The solution of the 
above differential equation is 

h 
mu 

8n2m 
h2 

nlnx QHY nanz + = sin - sin - sin - 
1 1 1 

where I is the length of one edge of the cubical box. On substi- 
tution of equation 17 in equation 16 it is seen that the permitted 
values of E are 

Here h is Planck’s constant, m is the mass of the molecule and 
nl, nz and n3 are three quantum numbers corresponding to the 
three degrees of freedom of the molecule. These numbers are 
restricted to integral values. The factor p ,  in equation 15 
represents the number of possible.ways in which a given value 
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en may be obtained by using different integral values for nl, n2 and 
n3. For the simple form, equation 15, it is possible to evaluate 
e-". 

In order to do this it is necessary to note the significance of 
p n .  p ,  is the number of different ways that a given energy 

may be represented as a sum of the squares n:, n:, n:. Physically 

these different representations correspond to the different direc- 
tions of velocity possible for a molecule of kinetic energy, E, ,  

inside the box. 
It is not possible to express p ,  as a simple function of en, and 

it is not necessary to do this to obtain ea. If we sum equation 15 
over all values of n we only need to remember that the exponential 
term is to be summed over all integral values of nl, n2, ns, and pi 
drops out. We have 

ni nr ni 

This may be written 

As 

approaches zero the value of 

n 
approaches 

and equation 21 becomes 
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1 3  = v 
where V is the volume of the box. Hence4 

Equation 13 may be written in the form of equation 15 when 
e" is large compared to unity, and by reference to equation 24 
we see that this is the case for a gas at  ordinary temperatures and 
pressures. 

The general form of the distribution law for a monatomic g&s 
may therefore be written 

which is the standard form in which we shall write all distribution 
laws.K 

THE DISTRIBUTION LAW FOR DIATOMIC GASES 

The general form of the distribution for diatomic gases must 
take account of the internal energy of the molecule. Actually 

The author is indebted to  Mr. R. H. Ewart for this method of evaluating ea. 
6 In the sketchy derivation given above, we have only indicated that  equation 

25 represents the most probable distribution of molecules. It can be shown 
mathematically that  the number of arrangements which gives the distribution of 
equation 25 is so much greater than the number of arrangements corresponding 
to  any distribution differing appreciably from equation 25, tha t  the total number 
of all other arrangements is negligible when compared with the number of arrange- 
ments corresponding to  the distribution of equation 25. 

The fundamental postulate of the Bose-Einstein statistics is that  the permuta- 
tion of like molecules does not produce a new arrangement of molecules. In the 
Boltamann statistics each permutation of molecules is counted as a new arrange- 
ment. The fact that  the two kinds of statistics give the same limiting form of the 
distribution law must be regarded as a coincidence. The distribution law (7) 
is derived for a constant total energy. It remains to  show that  the total energy is 
related in some simple way to  the absolute temperature. This may be done either 
by use of the laws of thermodynamics or by an arbitrary definition of absolute 
temperature in terms of the average translational energy of a gas molecule a t  
higher temperatures. 
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of course a t  any instant a molecule possesses a certain discrete 
energy, but this energy may be represented as a sum of transla- 
tional, rotational, vibrational and electronic terms. Thus, 

En = En(tr) + €n(r) + en(v) + €.(e) (26) 

For example, in addition to possessing a certain discrete trans- 
lational energy a molecule may at a given instant exist in particu- 
lar rotational, vibrational and electronic states. 

Corresponding to the multiplicity of each state or level there 
will be an integral weight factor. The general distribution law for 
a diatomic molecule thus becomes 

€n(W + cn(r) + €n(r) en(,) - 
N ,  = NKpn(tr)pn(r)p.(v)p,(,)e kT (27) 

In  so far as the distributions of these energies are independent of 
one another, distribution equations may be written for particular 
forms of the energies. Thus, 

(28) N .  = NKp,( , )e  kT 

represents the distribution of diatomic molecules among the 
various rotational levels. The internal energy of the molecule 
is quite independent of the translational energy, but the distribu- 
tion of the various rotational, vibrational and electronic energies 
may only be considered independent as a first approximation. 
The reasons for this will be noted later. 

€ 4 1 )  -- 

GENERAL PROPERTIES OF THE DISTRIBUTION EQUATION 

The partition function 
By summing equation 2 over all energy levels we obtain 

i -0 i = O  

From this equation we see that 
1 

K =  
€i 2 pie-  TZ 

i -0  
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and equation 2 becomes 

e i  2 pie- i~ 
i = O  

The summation 
m 

E i  2 pie- 
i = O  

has been called by Planck the “Zustandsumme.” This is not a 
convenient word for an English-speaking person and it has no 
satisfactory translation, but R. H. Fowler has suggested that it 

. 
\ ‘. 

FIQ. 2. GRAPHICAL REPRESENTATION OF THE DISTRIBUTION LAW 

be called the “partition function” and we shall use this term for 
this very important expression to which we shall be constantly 
referring in this paper. 

The graphical representation of the partition function 
In figure 2 is a graphical representation of a partition function. 

The various terms of the summation e - 3  are plotted as ordinates 
against the energy divided by k T ,  as abscissas. The partition 
function is obviously the sum of the lengths of the ordinates to 
infinity. This is a very convenient graphical representation. 

ai 
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I \ \  

Since the spacing of the ordinates is proportional to the spacing 
of the energy levels it is convenient to turn the diagram (figure 2) 
around and plot it as in figure 3. The plot is now similar to 
figure 1. The spacings of the energy levels are multiplied by the 
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FIG. 3. GRAPHICAL REPRESENTATION OF THE PARTITION FUNCTION 

1 
kT constant factor --, but this causes no difficulty since the scale 

is arbitrary. The distribution of the molecules among the various 
levels is easily visualized, since the number of molecules in any 

CHEMICU RIVIIWB, VOL. IX, NO. a 
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level is proportional to the length of the level. Degenerate 
levels are represented simply as multiple levels, the lines being 
drawn very close together. The effect of temperature on the 
distribution is shown in figure 4, where the spacing of the levels 

0 

FIQ. 4. GRAPHICAL REPRESENTATION OF PARTITION FUNCTIONS AT DIFFERENT 
TEMPERATURES 

The average energy is taken as the zero in each case 

is increased, due to a small value of lcT corresponding to a lower 
temperature. The bounding curve represented by the dotted 
line remains unchanged. 
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The zero of energy is always arbitrary. The effect of a change 
in this arbitrary zero of energy is shown in figure 3. Unit length 
is always assigned to the level of zero energy. If we wish to 
take our zero of energy, not as the diagram is drawn but at a 

point which lies a distance 2- below eo we simply draw a new kT 
bounding curve starting with e:. Mathematically this is equiva- 

lent to adding the term -5 to each of the values 2, 2, etc. We 
now write the partition function, 

kT kT kT 

i =O 

It is seen that the change in the zero point of energy is equiva- 

lent to multiplying the partition function by the term e-.@. The 
value of the partition function depends upon the arbitrary zero 
of energy chosen. It must be remembered that the arbitrary 
zero of energy is not an energy level of the molecule, except as i t  
may coincide with one of the levels. 

E 

The partition functions fo r  various kinds of energy 

By comparison of equation 25 with equation 31 we see that the 
partition function for the translational energy of a gas is6 

It has been stated above that the distributions of the rotational 
and vibrational energies of a diatomic molecule are practically 
independent of each other. The spacing of the rotational levels 

The complete partition function for the atom of a monatomic gas must include 
the electronic levels to  which the atom is excited in the emission of the line spec- 
trum. The first excited state usually lies so far above the normal state that  it 
need not be considered. However, except for IS states the normal levels of the 
atom are multiple, and a corresponding multiplicity is introduced into the parti- 
tion function. 
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depends upon the moment of inertia, and the moment of inertia 
is not affected by the lower state of vibration. Neither does the 
rotation affect the vibrational frequency appreciably. On the 
other hand, electronic excitation usually changes both the mo- 
ment of inertia and the vibrational frequency. 

In  the absence of electronic excitation, theoretical expressions 
can be obtained for the rotational and vibrational partition func- 
tions. The rotational partition function is 

n(n+l)h* 2 (2n + 1) e- 8nrlkT 
~~ 

n =O 

The sum of this series approaches the limit 

WZkT 
hP 

when the term 
h' 

8r'ZkT 

is small. For large values of n the moment of inertia I increases 
due to the stretching effect of the centrifugal force, but this effect 
is usually negligible. If the term 

h' 
8r'IkT 
- 

is not small the series must be summed term by term. For the 
vibrational partition function we have 

For the higher vibrational states the frequency w does not remain 
constant so that an error is introduced. For the more compli- 
cated states of molecules, such as the 3 2  which characterizes 
oxygen, or the ~ I I  which characterizes the hydroxyl molecule, 
various types of multiplicity appear which must be taken into 
account. In any event the exact value of the partition function 
may always be calculated by a term by term summation over the 
energy levels which are given by an analysis of the band spectrum. 
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THE ENERGY AND HEAT CAPACITY 

The total energy of any kind in a system of molecules in any 
form may be obtained readily if the distribution of that particu- 
lar kind of energy is independent of other forms of energy. For 
example, the total rotational energy is given by the expression, 

The value obtained for the energy depends naturally upon the 
particular arbitrary zero that is chosen for the energy. On the 
other hand the heat capacity is independent of the arbitrary zero 
of energy. The heat capacity is given by the expression, 

The foregoing formulas are of course exact only under conditions 
of temperature and pressure where equation 15 is valid, that is, 
where the Bose-Einstein statistics give the same result as the 
classical Boltzmann statistics. 

THE ENTROPY 

The customary a priori definition of entropy is by the relation 

S = R I n P  (36) 

Where P is the total number of possible arrangements of a sys- 
tem of molecules. For a system of molecules obeying the Bose- 
Einstein statistics we evaluate P as in equation 3 since, as has 
already been pointed out, the most probable distribution includes 
all but a negligible fraction of the total possible arrangements. 
From equation 3 therefore, 

(Ni + p i ) !  
In ( Ni! pi! ) 

i=O 
(37) 
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Expanding the factorials as before we have 

S = K 5 In (1 + E)Ni + K 2 In (1 + :)s 
i=O i = O  

From equation 11 the first term of this expansion becomes, for 
one mole, 

where E is the total energy per mole (= $T). In order to 

evaluate the second term in this equation we may rewrite it, 

If 8 is small, the value of the expression approaches unity 

and the logarithm is zero; if ?!’I is large, the expression approaches 

the number e as a limit and the expression becomes 

ni 

ni 

RZNi = R (40) 

The value of the second term therefore increases from a limit- 
ing value of zero at  0°K. to R, at  temperatures where equation 
25 holds for a gas. The entropy of a monatomic gas is given 
exactly under ordinary conditions by the equation, 

ROTATIONAL AND VlBRATIONAL ENTROPIES 

We have seen that where the distribution of one form of energy 
is independent of other forms, a separate distribution equation 
can be written for this form of energy as equation 34. By the 
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same process of reasoning we can separate the terms involving 
the rotational or vibrational entropy. By substituting from 
equation 27 in equation 41 we obtain as the general expression 
for the entropy of a diatomic gas 

This equation may be written as a sum of entropy terms of which, 
for example, the rotational entropy is 

If we write 
E = No; (44) 

where i is the average rotational energy per molecule, equation 
42 may be written 

The same transformation may be made for any form of energy 
which is independently distributed. 

The entropy is seen to be equal to R times the logarithm of the 
partition function when the average energy per molecule is ar- 
bitrarily taken as the zero of energy. Reference to figure 4 will 
make this clear. In  accordance with our graphical scheme of 
representation the zero of energy is a line of unit length. As the 
temperature approaches zero, the average energy per molecule 
approaches and coincides with the lowest level and the partition 
function takes on the value unity and the entropy becomes zero. 
It would be a case of petitio principii to assume that this was a 
demonstration of the absolute character of entropy, because we 
must remember that we assumed in our derivation of the equa- 
tion for entropy that the additive constant was zero. However, 
this seems to be a very illuminating illustration of the significance 
of entropy. The entropy of a system of molecules is a measure 
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of the extent to which the molecules are distributed over different 
levels. 

It is important to notice the effect of the weight factor p ,  in 
cases where it is different from unity. This factor gives the 
multiplicity of the level and is taken care of in our graphical 
representation by actually representing the levels as multiplets. 
In  the absence of a perturbing field these multiplets would coin- 
cide, but we may always assume that some perturbing field is 
present due to adjacent molecules. Under these conditions we 
may be sure that the multiple levels will be separate, and this 
has an important bearing on the entropy at 0°K. of substances 
such as molecular oxygen or ortho-hydrogen. Each of these 
molecules has a resultant spin of one unit. The spin in the oxy- 
gen molecule is due to the electrons and in the ortho-hydrogen 
molecule it is due to the protons. In addition, the ortho-hydro- 
gen molecule has an angular momentum of one unit in its lowest 
state. On account of the different orientations of the spin and 
angular momentum in the external field, which may always be 
assumed to be present with corresponding slight differences in 
energy, the lowest level for the oxygen molecule is threefold, and 
for the ortho-hydrogen molecule ninefold. As the temperature 
is lowered to near absolute zero, however, the molecules will be 
found to lie on the lowest level of the multiplet, which of coures 
gives a zero entropy.’ 

In table 1 are given the values of the entropy and heat capacity 
a t  constant volume as calculated from the data of the band 
spectra for a number of molecules. The calculations for a num- 
ber of these molecules have been published elsewhere by various 
authors. The data calculated in this way, while in general 
agreement with the data obtained by direct thermal measure- 
ments, are more accurate. The entropy of the hydrogen com- 
pounds includes a term R In 2 for each atom of hydrogen in the 
molecule. This is to take account of the multiplicity produced 
by the proton spin which has been discussed above. No term is 
added for the nuclear spin of other elements such as chlorine. 

7 Contrast Stern, T. E.: Proc. Roy. SOC. London lSOA, 367 (1931). 
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because the spin is not known with certainty. In  the case of 
hydrogen, the spin effect may be obtained by direct thermal 
measurements on the equilibrium mixture of ortho- and para- 
hydrogen.* In figure 5 is given the heat capacity curve, as 
calculated by Bonhoeffer and Harteck (9) for hydrogen gas, 
in the presence of a catalyst for the interconversion of ortho- 
and para-molecules. This curve rises to a very high peak a t  low 
temperatures, which gives a large contribution to the entropy and 
goes to make up the additional value of R I n 4  which is to be 
included in the entropy of the hydrogen molecule. Giauque and 

TABLE 1 

Entropies  and heat capacities calculated from spectroscopic datag 

SUBSTANCE 

HI. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
02.. ............................ 
c12. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HCl.. .......................... 
HBr. ........................... 
HI.. . . . . . . . . . . . . . . . . . . . . . . . . . . .  
co. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NO. ............................ 
OH. ............................ 

REFERENCES TO 
LITERATURE 

ENTROPY 298OK. 
1 ATMOSPHERE 

P E R  MOLE 

34.0 
49.0 
54.0 
62.3 
46.3 
49.2 
51.1 
47.3 
50.4 
45.3 

%EAT CAPACITY AT 
ONSTANT VOLUME 

MOLB 
AT 298°K. PER 

4.91 
5.03 
6.09 
6.81 
4.97 
4.97 
4.97 
4.97 
5.13 

Johnston (10) and R. H. Fowler (11) have calculated the entropy 
of the metastable 3 to 1 mixture of ortho- and para-hydrogen a t  
low temperatures. It is possible to do this, and the entropy will 

The nuclear spin of an atom makes the same contribution to  the entropy per 
gram-atom in the elementary state and in compounds. So far as practical calcu- 
lations are concerned, therefore, this entropy may be included or omitted, pro- 
vided only that  the practice be consistent. 

The particular values given herewith were calculated by the members of the 
author’s seminar in physical chemistry in 1929-30. 

In stating values of the heat capacity for gases at temperatures and pressures 
where appreciable dissociation occurs, i t  is necessary to  state whether the 
heat capacity is calculated for the pure diatomic gas or for an equilibrium mixture. 
The values given in this table are for the pure diatomic gas. 
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have significance for any equilibrium in which the relative pro- 
portions of the two kinds of molecules are not disturbed. The 
equilibrium between vapor and solid or liquid hydrogen is pre- 
sumably such an equilibrium, although here it is possible that the 
vapor is not in equilibrium with a condensed phase of the same 
composition. 

FIQ. 5. THE ROTATIONAL HEAT CAPACITY CURVE FOR HYDROGEN ASSUMINQ 
INTERCOMBINATION OF ODD AND EVEN STATES 

T h e  entropy of the electron 
According to the new quantum mechanics the electron should 

hare a weight factor of two in the vapor state because of its spin. 
This leads to an equation for the emission of electrons from hot 
filaments of the form 

bo 
I = AT%- (68) 

in which theoretical value of the constant A should be 120.4. 
Dushman (12) has shown that the best experimental value for this 



constant A is 60.2, or one-half the required value. This might 
be taken to indicate that the electron does not have a statistical 
weight of two in the vapor state. Another possibility is that the 
reflection coefficient of electrons from filaments is about 0.5. I t  
seems more probable, however, that some error exists in the 
emission data themselves. The problem requires further in- 
vestigation and is an interesting one because it is the only way 
that has so far been proposed for a direct experimental proof of 
the existence of spin in the free electron. 

T h e  isotope e$ect in the entropy of chlorine 
An interesting effect is to be predicted in the entropy of chlorine. 

Since there are present atoms of C135 and CI,? we may expect an 
equilibrium of the following sort. 

ClasClss + Cls7C13, = 2ClsaC1, (46) 

If we assume the heat of dissociation of the three kinds of mole- 
cules to be exactly the same, then it follows from simple kinetic 
considerations that the chances of forming a heteronuclear mole- 
cule are twice as great as for a homonuclear molecule. As a result 
we should have at equilibrium 

Since 
AF" = -RT In K 

and 
A H = O  

it follows that 
A S  = R In 4 (48) 

or that the entropy of the heteronuclear molecule is greater by 
R In 2 than that of the homonuclear molecule. This result is 
confirmed by the quantum mechanics, which predicts that alter- 
nate rotational levels will be missing for homonuclear molecules. 
This effect has nothing to do with the entropy of mixing or with 
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nuclear spin effects. At low temperatures the equilibrium will 
be shifted in an irregular manner until finally at  very low tem- 
peratures, where all rotational energy has been lost, i t  may be 
predicted that the entropy of homonuclear and heteronuclear 
molecules would be the same and the equilibrium constant of 
equation 47 will be unity. In this discussion the slight varia- 
tion of the entropy with the masses of the different isotopes has 
been neglected. 

CHEMICAL EQUILIBRIUM 

In a general discussion of chemical equilibrium the liquid and 
solid phases must be considered. While it is beyond the scope of 
this article to discuss them, partition functions exist for the liquid 
and solid states as well as for the gas, and these partition func- 
tions are related in the same way to the thermodynamic functions 
as the partition functions for gases are. 

In the following discussion we shall limit ourselves to equilibria 
in which the gaseous phase is present. 

Let us consider first an equilibrium wholly within the gaseous 
phases. 

A = nA‘ (49) 

For each species of molecule present there exists a partition func- 
tion. Let us suppose a volume V to contain N molecules of A and 
N 1  molecules of A’. The condition for equilibrium is that the 
proportions of N and N 1  in the vessel must be such that’the maxi- 
mum number of possible arrangements of the two species is 
possible. If P A  is the total possible number of arrangements of 
A, and PA, the total number of arrangements of A’, then the 
total number of arrangements of both species is the product 
P A  PA,. The condition for equilibrium is that this product shall 
be a maximum, and this condition may be conveniently expressed 
by taking logarithms and differentiating 

6 In P A  + 6 In PA, = 0 (50) 

It turns out that PA likewise PA’ are represented by equations, 
PA =Q2 (51) 

PA, p. QZ? (52)  

Let the equilibrium be of the form. 
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where QA and Q A ,  do not depend upon the total number of mole- 
cules present but only upon the number of molecules of each 
species per unit volume respectively. 

We may now write 

In PAPA, = N ,  In QA + N z  In QA, (53)  

If we now imagine the number of molecules to be varied by trans- 
forming a small number 8N1 molecules of A into N1 molecules of 
A’, the concentration of N and N ,  will not be affected appreciably 
and Q A I  &A* will remain constant. Equation 50 becomes there- 
fore, 

(51) 6N In QA + 6Nl In QA, = 0 

Remembering that 

we have 
6N = n6Ni 

In QA = n[ln QA, 

or 

&A = QX, (54) 

Now the number of possible arrangements per molecule is 
measured by the partition function. We can see intuitively that 
this must be so since the number of possible arrangements of a 
molecule must depend upon the number of energy levels and also, 
of course, on the values of the energy for each level in precisely 
the way that the partition function does. 

The statement can be demonstrated rigorously however, by 
considering the expansion of equation 37 for the total number of 
arrangements of a gas. This expansion leads to two varieties of 
terms. One of these terms is made up of the product of the 
partition functions for the various forms of energy divided by the 
total number of molecules N .  The second term arising from the 
expansion is the total energy of N molecules, divided by the abso- 
lute temperatuie. The term R for example in equation 40 is 

PV 
T equal to -, and represents the potential energy of the gas, due 
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to the volume occupied under an external pressure, divided by 
the absolute temperature. This energy term appears in the 
expression for the total number of arrangements as an exponential 

multiplier e . The whole expression is the partition function 

as expressed in equation 45. If we multiply by e we refer 
the partition function to its lowest energy level as aero. This is 
permissible, since the zero of energy is arbitrary. Only in com- 
paring two partition functions we must refer both functions to 
the same zero of energy and this may be done by multiplying one 

partition function by e , as is demonstrated in equation 32 
and figure 3. 

The condition for the equilibrium (equation 49) may be written 
down by substituting in equation 54 the partition functions for A 
and A’ divided by N and N 1  respectively. 

(6) 
( -6)  

€ 0  

kT 
- _  

The requirement that both partition functions be referred to the 
same zero is met by multiplying the second term of the equation 

by e where eo is the difference between the lowest energy level 
of A and the lowest energy level of A’ (figure 6). By taking 
logarithms and multiplying by R we obtain 

‘0 

kT 
-- 

HI 
T The first two terms of this equation are respectively SI - - and 

n(S, - $), where SI and Sz are the molal entropies and H I  and 

Hz the molal heat contents, referred to O”K., for A and A’, re- 
AH, spectively. The last term is --. Since T 

A H  = AHo - H1 f nH2 
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we have 
AH AS = - T (57) 

which is the fundamental thermodynamics condition for equilib- 
rium. 
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One of the simplest types of gaseous equilibria is the equilib- 
rium between the 2II ;  and the 2 I I +  states of a molecule such as 
hydroxyl. For this equilibrium n = 1 and we have from equa- 
tion 55 

A specific example of the equilibrium (equation 49) is a dis- 

I* = 2 1  (59) 
sociation, for example 

Here the condition (equation 5 5 )  becomes 

where rn = 2m. Making the substitution 
V kT 
N P  
- 2 u -  

equation 60 becomes, 

Here P is the partial pressure of the iodine molecules, P I  the 
partial pressure of the iodine atoms, I the moment of inertia of 
the molecule, o the vibrational frequency and 

ei - _  
Z i p i e  kT 

the partition function for the electronic levels of iodine atom. AH,, 
is equal to the spectroscopic heat of dissociation. Since half the 
rotational levels are missing for the iodine molecule we have for 
the rotational partition function, 
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The lowest level of the iodine atom has a multiplicity of 4 and the 
next levels are so high that they may be neglected. Hence we 
have (13) 

A& 3 
In R = - - + -In CG) - In f$) + In (1 - e%) + 5 In 2 (63) RT 2 

Another simple illustration of equilibrium is the vapor pressure 
of a crystal whose vapor is monatomic. For this equilibrium 

This gives the equation 

The term 

is the "true" chemical constant of Nernst. 

The hydroxyl equilibrium 

Hg0g + $02 = 2 OH (66) 

is an example of one for which it is possible to calculate the ther- 
mal equilibrium from data obtained chiefly from spectroscopy. 
For this reaction AH is estimated to be 18,000 calories. The 
entropy for water vapor at 298°K. is estimated to be 46.9 E.U. 
Hence A S  = 19.6. We have therefore 

The reaction 

AF" = 18,000 - 19.6 T (67) 

At  ordinary temperatures there will be very little hydroxyl a t  
equilibrium. At higher temperatures there will probably be 
only small changes in A H  and AS,  so that the equilibrium will 
be shifted toward the hydroxyl. It is possible that AF' may be 
negative at 1000°K. 
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